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ABSTRACT 
The dynamics of a viscoelastic collision between smooth surfaces two spherical solid bodies by the application of the 

“Method of the specific forces” have been given in the article, and the new conception for the definition of the elastic 

and the viscous forces in the common case of dynamics of a viscoelastic contact   is proposed here by the further 

development of this method. The forces of viscosity and the forces of elasticity can be found by integration of the 

specific forces acting inside an elementary volume of the contact zone. Also, the derivation of the integral equations 

of the viscoelastic forces, the equations for pressure in the contact is presented. Work and Energy in the phases of 

compression and restitution, and at the rolling shear have been derived. Approximate solutions for the differential 

equations of movement (displacement) by using the method of equivalent work have been derived. Equations for the 

normal contact stresses have been obtained. Also, equations for kinematic and dynamic parameters of the viscoelastic 

collision have been obtained in this article.  Examples of the comparison of theoretical results and conclusions have 

been given in the paper. 

 

KEYWORDS: Viscoelastic forces; Method specific forces; Elementary distributed axial loads; Geometry contact 

area; Dynamic modules; Dissipative energy; Viscoelastic parameters; Method equivalent work. 

 

     INTRODUCTION
The objective of this paper the finding of solutions to the problems of a dynamic contact between smooth surfaces two 

spherical bodies. It is assumed here that the surface of contact is smooth and in this case we are not considering the 

influence of roughness on the contact forces, and the initial velocities of contact V0x  and V0y are  less than the effective 

sound speed in the volume of deformation Vd (Fig.1). Also the influence of adhesive forces has not been considered 

in this paper.       

 

As we know, the mechanics of an elastic contact problem between two smooth surfaces have been studied yet in the 

19-th century by Herts (1882, 1896) and Boussinesq (1885), and then  later, for example, it was  examined   by many 

others researchers, such as: Bowden and Tabor (1939); Landau and Lifshits (1944); Timoshenko and  Goodier (1951); 

Archard (1957); Galin (1961); Sneddon(1965); Greenwood and Williamson (1966); Johnson, Kendall and Roberts 

(1971); Derjaguin, Muller and Toporov (1975); Bush, Gibson and Thomas (1975);  Tabor (1977); Johnson (1985); 

Webster and Sayles, 1986; Stronge (2000); Persson, Bucher and Chiaia (2002); Wriggers (2006); Hyun  and Robbins 

(2007). Also a viscoelastic contact between smooth and rough curvilinear surfaces of two solids already have been 

researched very widely and their results was published in many different manuscripts (Mindlin,1949; Radok. 1957; 

Hunter,1960; Goldsmith, 1960; Galin, 1961; Lee, 1962;  Graham, 1965;  Ting, 1966; Greenwood and Williamson, 

1966; Simon,  1967; Jonas, 1982; Padovan, Paramadilok, 1984; Johnson, 1985; Brilliantov, 1996; Brilliantov, Spahn, 

Hertzsch, Poeschel, 1996; Ramírez, Poeschel,  Brilliantov and  Schwager, 1999; Stronge, 2000; Barber and  Ciavarella, 

2000; Goloshchapov, 2001, 2003; Laursen, 2002; Dintwa, 2006; Carbone, Lorenz, Persson and Wohlers, 2009; 

Harrass, Friedrich , Almajid, 2010; Persson, 2010; Cummins, Thornton and Cleary, 2012; Carbone, Putignano, 2013; 

Popov 2015). In all these researches for a finding of    the   viscoelastic forces and stresses, the   traditional   theories 

and methods usually have been applied. But, in this paper, the novel theoretical and practical principals have been 

used for finding these forces and stresses. 

 

Let two spherical bodies having the average statistical masses  2m  and 2m , the average statistical radiuses  R1 and 

R2,   come  into contact with the relative velocities of mutual approach V0x  and V0y  (see Fig. 1). And let the axis X 
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coincides with the general normal n


 in the initial point of contact A, and axis Y is directed along the line of maximal 

approach of the contacting surfaces in the tangential plane ZAY (axis Z is placed perpendicular to the plane XAY and 

it  is not shown here);  O1  and O2  are centres mass of the bodies and they are the centres  of  curvature of  the 

contacting surfaces.  

 

As it is seen here, at the initial moment of the time, the colliding bodies come into contact at the initial point A with 

coordinates х = 0 and y = 0, but at  the moment of time t the surfaces of the  bodies  approach to each other  on the  

size x, which also is the relative displacement of the centres of mass of the contacting bodies.  Also it is shown here 

that: 1x  , 2x  are  normal deformations of surfaces of bodies; x   is  the mutual approach  between  two  surfaces 

by X; r is  a current  radius of the contact area in the plane XAY; hx  is the depth of the contact surface.  
 

 
Figure 1. Illustration of the  contact between a spherical solid bodies at impact 

 

It is obviously that  the bodies  are deformed under the influence of the normal  viscoelastic force nF  , the tangential 

viscoelastic force F  and   the reactive  moment M , and according to Newton’s Second Law  we can write:    
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Where: m is the effective mass; xу  , -  the  relative accelerations of the centres of mass of the bodies; Jz  is the effective 

moment of inertia of a bodies;    the relative angle of rotation of the bodies;   is the relative angular acceleration 

of the  bodies; lFM    is  the reactive  moment;   l is the shoulder of  tangential force.  As we know, at impact of 

two bodies, the effective mass m is entered like for the third body, and the movement (the displacement) x of the centre 

of mass of this third body is taken equal to the distance x the relative displacement of the centres of mass of the 

colliding bodies. Further in this article, let the third body will be called simply   as a body. At impact of two bodies, 

                                                                          X ≡ n

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according to the second law of Newton, we can write that
dt
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follows that 
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   The viscoelastic forces can be found as the sums of the elastic forces and the viscous forces:  
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Where: cnF is the normal elastic force; cF is the tangential elastic force; bnF is the normal viscous force; bF is 

the tangential viscous force.  

    Let us to write the equations for elastic forces and viscous forces in the simple form as follows 
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Where:  x and y are the sizes (distances) of the mutual approach between   bodies, which also are the displacements 

of the centres of mass of the  bodies along axes X and Y; xу ,  -  are the relative velocities of  mutual approach between 

the bodies; xb  is the effective parameter of viscosity at the compression; xc is the effective parameter of elasticity the 

compression; yb  is the effective parameter viscosity at the shift; yc is the effective parameter of elasticity at  the shift.  

 Consequently, according to the equations (1), (2), (3) and (4), we can write the next system of the differential 

equations of the displacement as: 
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The most basic problems in the finding of solutions for equations (5) are that, the dynamic contact  between two 

curvilinear surfaces is a non-equilibrium, a nonlinear  process of  deformations and in this case all mechanical dynamic 

parameters of viscoelasticity ( xc , yc , xb , yb ) are not the constant values. They are variable during of the time of 

impact, and all dynamic mechanical and physical properties of the materials depending on dynamic conditions of 

loading and temperature. Therefore, especially for  the solving of these problems, such as the definition of the normal 

viscous force  and the all tangential viscoelastic forces,  the “Method of the specific forces” have been developed by 

N. Goloshchapov (Goloshchapov, N., 2015)  

 

In the past many old papers and others  published recently (Mindlin, 1949; Simon,  1967; Johnson, 1985 ; Cundall   

and Strack,1979; Brilliantov, Spahn, Hertzsch, Poeschel, 1996; Schafer,  Dippel   and Wolf,  1996; Ramírez,  Poeschel, 

Brilliantov,  Schwager, 1999; Roylance, 2001; Brilliantov,  Poeschel, 2004; Makse, Gland, Johnson and Schwartz, 
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2004; Schwager and Poschel, Schwager  and Poschel,  2007; Becker, Schwagerand, Pöschel, 2008; Schwager and 

Poschel, 2008; Thornton, 2009;  Saitoh, Bodrova, Hayakawa and  Brilliantov, 2010; Cummins,  Thornton , Cleary, 

2012)  have been used existing theoretical models, such as the “Linear Spring Dashpot Model”- (LS+D), the “Hertz 

Mindlin Spring Dashpot Model”- (HM+D), and the “Discrete Elements Method” - (DEM).  In all of these methods 

and models, for the definition of the effective parameter of elasticity xc  (or stiffness, or spring parameter), the Hertz’s 

theory of elastic contact between two surfaces (Landau and Lifshitz, 1944, 1965)  has been used. Also for the purpose 

of finding the tangential forces the coefficient of friction was taken as a constant value. The more comprehensive 

analysis and review of   these already known models and methods can be found, for example, in the monographs of 

the authors, such as, Stronge, W. J. (2000), Van Zeebroeck, M. (2005),  Dintwa, E. (2006), Hongming Li (2006). But, 

the most basic problems in the finding of solutions for equations (5) are that, the dynamic contact  between two 

curvilinear surfaces is a non-equilibrium, a nonlinear  process of  deformations and in this case all mechanical dynamic 

parameters of viscoelasticity ( xc , yc , xb , yb ) are not the constant values. They are variable during of the time of 

impact, and all dynamic mechanical and physical properties of the materials depending on dynamic conditions of 

loading and temperature. And on other hand, we have to understand that, the Hertz theory allows only the finding the 

normal elastic force, but it is not enough for finding the viscous normal force and all tangential viscoelastic forces.  

The existing methods still cannot give the complete answer, how these nonlinear parameters of viscoelasticity can be 

found for the practical application by using the dynamic modules of elasticity and viscosity, which usually can be 

found by using the known methods (Ferry, J. D., 1948; Moore, D. F. ,1975; Van Krevelen D. W., 1972; Nilsen, L. E.,  

Landel, R. F., 1994).   

 

Most recent, from already published, researches in the field of the collision of viscoelastic particles (granules) with 

identical mechanical properties have been made by Brilliantov, Hertzsch, Poeschel, Spahn , Hertzsch, Spahn , 

Brilliantov (1995, 1996, 2004). They have obtained the equation for the normal viscous force with variable viscosity 

parameter  

 

                                             
2/1

2 )1(
4 


AR

Y
FF effN

disbn


 ,                                    (1*) 

     

where x , RReff  , Y is  the Young modulus,   is the Poisson ratio, 
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A is the damping viscous parameter, and where 1 and 2  are the viscous 

constants. But this theoretical result can only be used for the researching of the quisistatic contact of the bodies with 

the same physical-mechanical properties, and in this case we have the problem of finding the viscous constants “ 1 ” 

and “ 2 ”.  If the contacting surfaces have different physical-mechanical properties this conception does not give the 

answer, because this is a yet more difficult problem.  Also, for finding the equations for the tangential forces again the 

coefficient of friction was taken as the constant value. But, the coefficient of friction is not a constant value. It can be 

defined as the follows ratio:  
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It is obviously that the coefficient of friction is changing during the period of time of contacting. Thus, as we can see, 

the many   problems still exist now in this research area. Therefore, especially for  the solving of these problems, such 

as the definition of the normal viscous force  and the all tangential viscoelastic forces,  the “Method of the specific 

forces” and others theoretical and experimental ways for the finding of the kinematic and the dynamic mechanical  

parameters  between two   contacting  surfaces, such as the  elasticity  modulus and the  viscosity modulus, have been 

developed and   represented  in this  article below.  
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THE METHOD OF THE SPECIFIC FORCES    
Let us assume that in the infinitesimal period of the time dt, when the mutual approach between the  bodies is the 

infinitesimal magnitude  dx (Fig. 2), inside the elementary infinitesimal volume dV, which is arising around the current 

point of the contact A (Fig.1 and Fig.2), the infinitesimal viscoelastic forces dFn and dFτ are beginning to act. 

These forces can be found by differentiation of the normal Fxi  and the tangential Fyi specific forces by sizes da and 

dx: 

                                            daFdF xin  , dxFdaFdF yiyiy                                     (7)                                                                                                            

Where: da is the diameter of the contact area in the instant of the time dt; xiF  is the normal effective specific 

viscoelastic force; yiF  is the tangential effective specific viscoelastic force. 

According to the “Newton’s Third Law” the effective specific forces and the specific forces between contacting bodies 

have to be equal: xiF = 1xF = 2xF ; yiF = 1yF = 2yF .                                                Where: 1xF and 2xF  are the normal 

specific viscoelastic forces; 1yF  and 2yF  are  the tangential viscoelastic specific forces. Here and further in this paper 

the subscript I =1 is used for a soft body and I =2  is used for a more rigid  body. 

 
Figure 2. Illustration of the action of the specific viscoelastic forces inside the elementary infinitesimal volume of 

deformations dV in the vicinity of the  current contact point A at the instant of the time  dt. 
 

On the other hand, the specific viscoelastic forces can be found as the sum of the specific elastic forces and the specific 

viscous forces:  
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Where: xbF  is the normal effective specific viscous force; xcF  is the normal effective specific  elastic force; bxF 1 , 
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effective specific viscous force; ycF  is the tangential effective specific elastic force; byF 1
, byF 2

 are  the tangential 

specific viscous forces; cyF 1
, cyF 2

 are the tangential specific elastic forces.  

 

THE DEFINITION THE SPECIFIC VISCOELASTIC FORCES AND THE EFFECTIVE 

DYNAMIC MODULES AND VISCOSITIES BY USING THE “ELEMENTARY DISCRETE 

ELEMENTS MODEL” (EDEM)      
Also let us suppose that the volume of deformation is the system of an infinitely large number of elementary discrete 

elements (Fig. 3.) connected among themselves definitely. And also, in this case let us assume, that for the infinitesimal 

period of the contact time dt all deformations inside of each elementary discrete element are changing linearly and 

therefore all specific forces are changing linearly too. Based on this, the equations for all specific forces can be written 

as the linear functions:  
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Where:   E′ is  the effective dynamic elasticity modulus at the compression; E is the effective dynamic viscosity at 

the compression; G  is effective dynamic elasticity modulus at the shear; G is the effective dynamic viscosity at 

the shear; 1E   , 2E  are the dynamic elasticity modules; E1  , E2  are the dynamic viscosities; 1G , 2G  are  

the dynamic elasticity  modulus at the shear; G1 , G2 are  the dynamic viscosity at the shear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustration of the “Elementary discrete elements model (EDEM)”: a. the elementary discrete element 

of the normal contact between the   bodies; b. the effective elementary discrete element of the normal contact 

between  the   bodies. 

 

It is obvious that the specific elastic forces are equal at the initial instant of the contact, when t = 0, х = 0 (in this point 

they are equal zero) and they are equal at the instant of the maximum compression between bodies, when х = хm (in 

this point they reach the equal maximum value). But at the same time, the specific viscous forces are equal at the 

initial instant of the contact, t = 0, х = 0 (in this point they reach the equal maximum value) and they are equal at the 
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instant of the maximum compression between bodies, х = хm (in this point they are equal zero). All these forces in the 

Eq. 9  are linear continuous functions and if they are equal at two values of argument, they have to be equal at any 

other values also, or by other words, they are equal in any instant of the time of the contact. Thus consequently we 

can write that   

  

                   xcF = cxF 1 = cxF 2 ,  xbF = bxF 1 = bxF 2 ,  ycF = cyF 1
= cyF 2

,  ybF = byF 1
= byF 2

              (10) 

 

     In the proposed model, each elementary deformation between two bodies develops analogically like the 

deformation of the elementary discrete element, which is depicted in Fig. 3.a.  It is a simple case of the linear model 

of deformations of elementary discrete elements, and instead this model with four elements we can use its analogy – 

the model with two effective elements depicted in Fig. 3.b.  Also the “Elementary discrete elements model” for the 

normal forces can be used for the tangential forces in the same manner.  Since we have here the case of the linear 

model of viscoelastic deformation, we can find the effective compliances as the sums of the elastic and the viscous 

compliances as 

21

111

EEE 






,  

EEE 21

111

 






, 

21

111

GGG 






,  

GGG 21

111

 






 and finally the 

formulas for calculation of the effective dynamic viscosities and the effective dynamic modules of elasticity can be 

written as: 
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Now, according to (9), (10) follows that 2211 xExExEFxc
 , and then according to (11) we can write 

respectively that      
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Finding of the integral equations viscoelastic forces  

Now, having found all the specific forces and since as the areas of integration a and hx  are known (Fig.1 and Fig.2), 

according to  the equations  (7), (8) and (9) we  can write respectively 
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  In the equations (13) the dynamic viscosities can be replaced at the dynamic viscosity modules according to the 

known expressions (Ferry, 1963; Van Krevelen , 1972)   
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Where: E  is the  effective  viscosity  modulus; G  is the  effective viscosity   modulus at shear; 
x  is   the frequency 

of damped oscillations   by axis  X;  y   is the frequency of damped oscillations  by  axis  Y. Viscosity modules can 

be found by using the known (Ferry, J. D., 1948; Moore, D. F. ,1975; Van Krevelen D. W., 1972; Nilsen, L. E.,  

Landel, R. F., 1994) formula 
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where   is the angle of mechanical losses.   
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Remark: In dynamics of the continuous environment the dynamic module of elasticity also named as the accumulation 

or storage modulus, and the dynamic module of viscosity also named as the loss modulus (Ferry, J. D., 1948; Moore, 

D. F. ,1975; Van Krevelen D. W., 1972; Nilsen, L. E.,  Landel, R. F., 1994).    

 

According to the Eq.13 the six integral equations  can be written respectively as   
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Remark: If the area of the contact surface is not a circle, but an ellipse, then we will get eight equations, because in 

this case we will have two areas of integrating by the big and by the small axes of an ellipse. 

 

CONSIDERATION OF THE GEOMETRY OF THE CONTACT BETWEEN TWO SPHERICAL 

SURFACES  
And now, the important moment, it can be seen that for a finding of the solutions for all these equations (16) we  have 

to  know only  the equations or the formulas for r = f(x), a = f(x), and for hx = f(x).  For example, we can use that 
2/1)(Rxr   according to the Hertz theory, but according to this theory, the area of contact is a flat surface and the 

depth of indentation (the depth of the contact surface) hx = 0. But in reality the area of contact usually is not a flat, it 

is a curvilinear surface.  In Hertz’s theoretical models has been taken that the contacting surfaces deform together 

without of the sliding, but in reality each surface deforms independently. Therefore, to find the radius of the contact 

area r in reality, let us to consider the geometry of the contact between two spherical surfaces, like it is depicted in the 

illustrations in Fig.4.  

 
Figure 4. Illustration of the contact between two spherical surfaces 

 

We know that a collision of freely moving bodies is the special state; it is the   period of time when the colliding bodies 

are not   affected by any external forces.  It is not a compression of two bodies under the influence of the external 

force when only the certain part of the bodies in the contact zone is deformed.   In the initial instant of the time of 

freely moving collision of two bodies or two particles the Newtonian force of inertia begins to act:
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xmxmF i

n

i
x

 )(
1
 ,  where mi  is the elementary mass of the body. It is obviously, if the initial speed of impact 

less than the sound speed inside the volume of deformation, all elementary masses of a body will be involved in the 

movement together in the same time and all space of a body will be deformed in the same time as well.  If a body is 

elastic or viscoelastic, the position of the centre mass of a body relative to the initial position of the main axes of 

inertia of the body will  not be changed and the magnitudes of the moments of inertia of a body will not changed 

during the time of a collision, because if they will be  changed,   the continuity of an environment inside a body will 

be broken. Also it is obviously  that, in the time of indentation of  more  hard  surface into a  soft surface,  the  contact 

surface takes a curvilinear shape, where the point B (see Fig.4) is a special point where the deformations always equal 

zero, and  the border of the area of contact always pass through this point B. According to this statement, for example 

in the case of contact between two spherical bodies (see Fig.5), the distance O2B  between this point and the centre of 

curvature O2  of the surface of more hard body   will  not be  changed  in  the period of time  of  contact.  This distance 

always equals to the radius of curvature R2. Also the distance O1B  between this point and the centre of curvature O1  

of the surface of  less hard body will  not be changed in   the period of time  of  contact too.   This distance always 

equals to the radius of curvature R1. Hence, obviously that O2B = O2D = R2 and O1B = O1E = R1, and also we can 

write that xRRCOCO  )( 2121 , and since as 
2/122

11 )( rRCO  and 
2/122

22 )( rRCO  , after a 

simple calculation, if to neglect by members of smallest order, we get the next equation for the radius of contact area 

r = f(x):                   

                                                               
22 2 xRxr                                                            (17) 

 

where  

21

21

RR

RR
R


  is   the effective radius of contact curvature 

 

  The equation (17) is not convenient for using and therefore, let us rewrites it as 

 

                                                                  Rxkr p

22  ,                                                           (18) 

 

 where    
R

x
k p  2  is the correlation coefficient. If a deformation is small, when xR  , hence that 2pk  

Practically for the solution of the contact problems of mechanics, the correlation coefficient can be found by the 

method of iterations and consecutive approximations.  

Obvious from (18) that the surface of the contact takes the parabolic shape  

 

                                                                 
2
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1
r

Rk
x

p

                                                             (19) 

    

Since the surface of the contact has a parabolic shape, let us to take that the radial distribution of the pressure inside 

of this area changes analogically according to the parabolic function as 
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Where: ry is a current radius of the contact area along axis Y; Pc is the maximum magnitude of the pressure in the 

centre of the contact area. 

 

Further since the square under this function and the square under the linear function of the mean pressure Pm in the 

contact area are equal, we get 
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than after the integration  

                                                                        rPrrP mc 




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


3

1
,                                                                 (22) 

 

and finally the ratio between maximum and  the mean pressure in the contact zone can be found as 

                                                                   mc PP
2

3
                                                              (23) 

    

Now let us to define 
xh -

 
the depth of the contact surface (Fig.4 and Fig.1). The expression for the radius of contact 

area can be found also as follows (Fig.4): 

 

                                                        22

2

2

2

2

2 )( xhxRRr                                                        (24) 

 

After a simple geometric calculation, if to neglect by members the smallest order, we obtain the next equation for the 

radius of contact area: 

        

                                                            )(2 22

2

xhxRr                                                        (25) 

 

Then after the comparison equations (17) and (25) we can write that 

 

                                                            RxhxR x 2)(2 22                                                     (26) 

 

Finally since xDx 22  , the formula for hx can be written as follows  
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 where 






 


2

22

R

RDR
kh   is the coefficient of the depth of the contact surface. 

For example, in the case of contact between a spherical body and a semi-space, when R2 = R follows that 

12 )1( DDkh  , and hence   

                                                                xDxhx 11                                                           (28) 

 

Finding equations for the viscoelastic forces 

Now  it is necessary  to prove that the equations in the system (16) are valid and correct. Since as drda 2 and we 

know contact radius from (18), we can find the derivative for a by x 

 

                                                               dx
x

Rk
da

p

2/1

2/1

 ,                                                       (29) 

 

And then after integration of the integral for the elastic force from the system of equations (16) we get  

                                            dxxREkF pcn

2/12/12 = 
2/32/1

3

4
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If  kp  = 1 we have the same solution that  has been obtained using the Hertz theory (L. Landau, 1944, 1965). The 

obtained result is the proof that this method of finding the normal elasticity force definitely is valid and correct, and 

that the Hertz’s theoretical model can be use as the partial case, if taken that the contact surface is a flat. It is obviously 

now, if we know a functional dependency between r and x, we can always find the elastic force.  But, if this method 

is valid and correct for definition this force, then it should be valid for the definition of all viscoelastic forces in the 

equations (16).  Thus, if   the functional dependency between  r and x  is known, for example  according to the Hertz 

theory or   it can be found by using  a simple geometrical analysis, we as well can find  other viscoelastic forces  by 

an integration of the integrals   from the system of equations (16)  respectively as follows: 
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Remark: Here )(),(),( tytytx   are the functions linear independent from x, and they cannot be integrated by x, and 

they stay outside of integrals.   

Since as hx is known, the equations for viscous   hbF  and hcF  finally can be written as follows:                                                                       

                                           yx
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F
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h
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                                   (32)                                                                                                                                                                                                                                                                                                                                                             

After the summation of all partial equations for the elastic and the viscous tangential forces we get the general 

equations for the tangential forces:  
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  where      

                                                                                                           (34) 

 

Thus, finally the equations for the normal and tangential viscoelastic forces can be written as  
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2/12/12 xRkxkP phx 
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Now according to equations (1), (2), (5) and (35) the system differential equations of the displacement (movement) 

of the centre of mass of a body can be written as follows:                          
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                                (36)                                                                            

 

 Thus, the formulas for the variable viscoelasticity parameters in the system of equation (5) can be written respectively 

as  
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As we can see, indeed that, the parameters of viscoelasticity are not the constant magnitudes, but they are the functions 

of the displacement x. 

 

WORK AND ENERGY 
As we know the period of time at impact includes two principally different phases such as, the phase of the 

compression and the phase of the restitution. Also in the duration of  a collision, the full initial kinetic energy of the 

colliding bodies divides  into the two independent parts such as, the normal initial kinetic energy  
2

2

0x
x

mV
W    and 

the  tangential initial kinetic energy 
2

2

0 y

y

mV
W  .  On the other hand, the full kinetic energy at the  instant of rebound 

2

2

t

t

mV
W   (where Vt  is the relative velocity between  the centres of mass of the bodies in the instant of rebound)  

includes  two independent parts such as, the normal kinetic energy at the  instant of rebound 
2

2

tx

tx

mV
W   (where Vtx 

is the normal relative velocity  between the  centres of mass of  the  bodies in the instant of the rebound ) and the 

tangential   kinetic energy  the   instant  of rebound 
2

2

ty

ty

mV
W   (where Vty is the  tangential relative velocity  between 

the centres of mass of the bodies in the instant of rebound). Therefore, the description of the processes of the 

compression and the restitution along the axis X, and the shear along the axis Y are given independently in this part of 

the paper.   

 

WORK AND ENERGY IN THE PHASES OF COMPRESSION AND RESTITUTION  
The graphical illustration of the functional dependences between the normal viscoelastic forces and the displacement 

of the centre of mass of  the bodies is depicted in Fig. 5: (a). Also the “Rheological model of Kelvin-Vogt”, which 

usually is used for the viscoelastic contact, is represented in Fig. 5: (b). It is obvious that the normal initial kinetic 

energy Wx  is spent for  the work Axm of  the normal viscoelastic force nF  in the compression phase. But on other 

hand, Axm can be found as the sum of   the works  Axcm and Axbm, where    Axcm  is the work of the normal elastic force  

cnF  and Axbm  is the work of the normal viscous force bnF  in the compression phase. Also we can say that the part of 

the kinetic energy Wx is transformed into the potential energy of the nonlinear elastic element (spring) (Fig.5: (b)) and 

the other part of this kinetic energy is dissipated during the time of deformation at the compression of the nonlinear 

viscous element (dashpot). 
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Figure 5: (a) - The graphical illustration of the functional dependences between the normal viscoelastic forces 

and the displacement x of the centre of mass of the bodies; (b) - The “Nonlinear Rheological Model of Kelvin-

Vogt”, where cx and bx are not the constant magnitudes. 

  

However, on the other hand, the work Axt of the normal viscoelastic force  nF  in  the restitution phase  is equal to  the 

normal energy of the  bodies Wtx  at the  instant  of rebound,  and also  Axt can be found as  the difference between Axct 

and Axbt, where  Axct  is the work of the normal elastic force  cnF  and Axbt  is the work of the normal viscous force bnF   

in  the restitution phase.  Consequently, we can write that 
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It is obvious that Axcm = Axct and hence the potential energy which has been accumulated inside of the elastic element 

(spring) fully returns back to the bodies in the instant of rebound. The works Axcm and Axbm at the compression can be 

found by integration:  
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  Analogically the works Axct and Axbt  in the restitution phase can be found as follows: 
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  and 
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Where: 21  x  is the period time of the contact; 1  is the period time of the compression; 2 is the period 

time of the restitution; xm is the maximum magnitude of the  compression between  bodies   (also it is the maximum 

displacement of the centre of mass of the  bodies, which is equal to the maximum of mutual approach  between bodies).   

According (38), (39), (40), (41) and (42) the equations for the work of the compression and the restitution can be 

written as follows: 
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and according (15) and (43) we can write  
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Also, we can define the energetic coefficient of restitution ex, which equals to the square of the kinematic coefficient 

of restitution kx (further it will be named simply the coefficient of restitution), like the ratio between Wtx  and  W0x: 
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Since   as    we can take that       
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  and using (46) and  (48) we  get that 
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Thus, we have got the equation, which binds the coefficient of restitution and the tangent of the angle of mechanical 

losses. So, if kx = 1 ,  tgβ → 0 we get the totally elastic impact, but if kx = 0,  tgβ → ∞ then we get the totally viscous 

impact. Using (49) we can write the formula for the restitution coefficient as 
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If to compare the equations (45) and (50) we can finally get the expression for the maximum magnitude of the 

compression between a body and a semi-space respectively as  

 

                                                    

5/2

2/1

2

0

16

15














 x

p

x
m k

REk

mV
x                                            (51) 

 

In the case of a totally elastic impact, when kx = 1 and kp = 1  we get the same result, as it has been obtained by L. 

Landau (1944, 1965) according to the Hertz theory for the totally elastic contact.  

 

Work and Energy at the rolling shear 

It is obvious that, in  the during  time of  the displacement  and  the rolling shear along axis Y, the  tangential initial 

kinetic energy of  the bodies Wy  is spent for the work Ay of the tangential viscoelastic force F . The work Ay  can be 

found as the sum of  the works    Ayb and   Ayc, where Ayb is the work of the tangential viscous force  bF  and Ayc is 

the work of the tangential elastic force. But on other hand, it is obvious as well, that the work  Ayb is  transformed into  

the dissipative energy  Qω  and   the   work  Ayc   is  transformed into    the  work Aω  of  the relative rotation  between  

bodies. Thus, according to the “Law of the preservation of energy for a non-conservative (dissipative) mechanical 

systems”, we can write equations for the relative displacement of the centres of mass of the bodies and for the relative 

rotation of the bodies, as follows below:  
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Where: dyFAy   ;  dMA  ; dyFQ b  , and where lFM  . 

Since  bc FFF     and since as ldyd / , hence 

                                          dyFFdMA bc )(                                            (53) 

Also since, if the initial angular velocity 0  equals zero  we can write the equations (52) for the boundary conditions  

in  the instant of the time 1t  of the maximum compression 
mxx   and 1yy  as follows: 
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Where: Vmy is the velocity at the instant of the time 1t ; ωm  is the relative  angular velocity between bodies at the 

instant of the time 1t ; 1y  is displacement of the centres of mass of  the  bodies along axis Y at the instant of the 

time 1t  . The equations (54) can be rewritten as   
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   Also at the point of the rebound, when 
xt   we get  
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Then we can write that 
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The summation of the systems (55) and (57) together yields the following result  
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We can rewrite equations (58) in the next order 
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Finally, we get 
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Where:  dyFA

y

bybm 
1

0

   is the work of the tangential viscous force bF in the compression period 1 ; 

dyFA

y

cycm 
1

0

   is the work of  the tangential elastic force cF  in the compression period 1 ; 
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dyFA
ty

y

bybt 
1

  is the work of the tangential viscous force bF in the restitution period 2 ; 

dyFA
ty

y

cyct 
1

 is  the work of  the tangential elastic  force cF in the restitution period 2 .        

 

Since as from Eqs.33 follows that yP
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F x
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b
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   and  yPGF xc

 , all these works in (60) can be found by 

integration, as follows:  
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Where       

                                                  
2/12/12 mpmhm xRkxkP                                                          (62)                                                       

    

The full changing of the energy of the dissipative system at the rolling shear can be found as the difference between 

Ay and Ayc from (60):  
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According to the equations (60) the conclusion can be drawn that the work  Ayc  is transformed into the kinetic energy 

of the relative rotation between  the bodies, but on the other hand the work Ayb is transformed into dissipative energy 

Qω in the process of the internal friction.  Accordingly, using (60) and (61) we have    
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 Hence,  the equation for the relative  angular velocity at the instant time of rebound can be written as follows 
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 Since the work Ayb of the viscous tangential force bF  is equal to the dissipative energy Qω , using equations (61) we 

get 
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Since as  21  xk , finally we get 
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APPROXIMATE SOLUTION TO THE DIFFERENTIAL EQUATIONS OF THE DISPLACEMENT BY USING 

THE METHOD OF THE EQUIVALENT WORKS 
For practical application of the differential equations (5) with the variable viscoelasticity parameters, we can find their 

approximate solutions in the same manner as for the equations with the equivalent constant viscoelasticity parameters, 

if we choose the equivalent constant parameters Bx, Cx and By,  Cy  so that the work Axcm and Axbm , Aycm and  Aybm  with 

the variable viscoelasticity parameters cx, bx and cy, by will be equal to the works with  the constant viscoelasticity 

parameters. Thus, according to this statement and according to a boundary value problem,  which  has to satisfy to  

the boundary conditions  mxx    and 1yy  , and using the known expressions for work Axcm and Axbm , Aycm and  

Aybm from  (39), (40) and  (61),  we can write next equations  
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 and also in the phase of the rolling shear for the period of the compression time 

                             
























 




2

1

11

2

1

0

0

0

2

1

2

1

0

22

2

1

2

1

1

1

1

1

yP
Gy

B
dt

dydy
BdyyBA

yPGyCydyCA

m

y

y

y

y

y

yybm

my

y

yycm




                      (69) 

Hence, according to the results obtained in (68) and in (69), we can write the expressions for the equivalent constant 

viscoelasticity parameters, respectively as: 
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Thus, the equations (5) with variable parameters can be rewritten as the equations with constant parameters as follows:  
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The equations (71) are the equations of the damped oscillations and the solutions to these equations are known:  
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Where: 
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0 xxx   ; 
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2
  is the normal damping factor;  
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x 0   is the angular frequency of the 

harmonic oscillations by axis X ; 
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is the tangential damping factor;  

m

C y

y 0  is 

the angular frequency of the harmonic oscillations  by axis Y.  

 

It is obviously that the period of time of the contact τx is equal to the semi-period of damped oscillations  Tx/2 by axis 

X. 
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  Since as   21  x   and  also by using equations (46), (48),(49)  and (73) we get: 
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The equation for the restitution coefficient we can write now as follows: 
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If tgβ = 0 hence kx = 1 , it is  a totally elastic impact, but if tgβ = π/2 hence kx = 0 and  x = 0 , it is absolutely plastic 

impact.  Both of these two cases are not possible in nature.  Finally, from (51) and (75) follows that  
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Thus we have a very simple way to calculate xm, if we know the value of tgβ. According to the equations (11), (14) 

and (15) tgβ can be calculated by formula 
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 The equations for the relative velocities of the centres of mass of the  bodies can be received by differentiation of 

(72): 
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Using (78) for the velocity, the duration of the time of the impact equals to the period of the time of the contact can 

be found now from the conditions txVx   and  xt   as   
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and since tgβ is known from (74),  by using (51),(79) and  (80) we  get  
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DETERMINATION OF THE DYNAMICS MODULES BY THE METHOD OF THE 

“TEMPERATURE-TIME SUPERPOSITONS” 
The dynamic elasticity and viscosity modules for high velocities of the collision can be found, if to follow the 

principles of the “Time-temperature superposition” according to the equation of the  “WLF” Williams - Landel - Ferry 

or Arrhenius (Ferry, 1963; Van Krevelen , 1972; Moore, 1975;  Nilsen and Landel, 1994).  First of all we have to 

define experimentally the effect of temperature for the period of the contact time τx, and for  the coefficient of 

restitution kx   at the  fixed initial velocity of impact. For example, if we  define these parameters for velocity at 2 m/s,  

then using the principles of the “Time-temperature superposition” we can determine   their values for any  velocities 

interesting for us, for example for velocity 100 m/c and for temperature 100 0C.  After this, when τx and kx  will be 

known, we can find the value of tgβ and the dynamic modules E′′ and E′.   If to use the equation (81), the expression 

for the calculation of the effective dynamic elasticity module can be written as follows 
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And, if to use (15), (74) and (82) we get the formula for the calculation of the effective dynamic viscosity module  
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Obviously, if kx = 0, then E′′ = 0 too.  We can find G′ and G′′ in the analogical way. 

 

VISCOELASTIC STRESSES IN THE CONTACT AREA 
Obviously that in the time of   mutual approach between bodies, under action of the elastic forces, the instant 

volumetric elastic stresses arise in the deformation  volume of  the contact,  and in the same time, the  instant volumetric 

viscous stresses have place in process of the inside friction of the layered structures of  a contact space between each 

other under action of the viscous forces.  These can be found by using the classical expressions, as    
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Where: cn   is the normal volumetric elastic stresses, bn  is the normal volumetric viscous stresses,  c  is the 

tangential   volumetric elastic  stresses,  b is the tangential   volumetric viscous  stresses; cxV  is the normal elastic 

deformed volume; bxV  is the normal viscous deformed volume;  cyV  is the tangential  elastic deformed volume; 

byV  is the tangential viscous deformed volume; xV  is the normal deformation volume; yV  is the tangential 

deformation volume; K    is the elasticity bulk modulus; K   is the viscosity  bulk modulus. 

The volumes of deformations  in differential forms dVdx - at the compressing and dVdy - at the shift (see Fig. 2) are 

defined by formulas 

 

                                                       dxSdV xx  ,  dySdV yy  ,                                                 (85)                                                                                                                                                                                  

Where RxkrS px

22     is the area of contact  placed perpendicular to axle X, yS  is the area of contact  placed 

perpendicular to axle Y. Formulas  for yS  can be found by integration rdxdS y 2   
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and   respectively we get  

                                        RxdxkdV px

2   and dyxRdVy
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                                       (87) 

 The deformed volumes, which are equal to the changing of volumes of deformations in the course of their 

deformations, can be defined according to the balance between the elementary works, which spent on deformations, 

and the elementary energies of these deformities: 
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Where: dAcx , dWcx , dAcy , dWcy  and dAbx , dWbx  , dAby , dWby are the elementary work and elementary energy of 

elastic deformation at compression and shift. 

Thus the deformed volumes we can write like the system four equations 
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The normal volumetric viscous and elastic  contact stress according to the formulas (84), (87) and (90) can be written 
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Thus, for the normal volumetric viscoelastic   is the sum the elastic and viscous normal stress   
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  On other hand the normal   mean pressure Pm in the contact area, can be found  as 
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 thus  as we can see nmP  .                                            

  The tangential volumetric viscous and elastic  contact stress according to the formulas formulas (84), (87) and (90)  

can be written as   
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 And hence, the expression for the tangential volumetric viscoelastic stress can be written as 
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Definition of the maximal stresses in the contact area 

Most dangerous values of contact stresses have in the points when values of forces elasticity and viscosity maximal 

too. According to the hypothesis of maximum tangential stresses the equivalent  stress can be defined under the 

formula 

 

                                                         
22 4 mnme                                                           (96) 
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Since as ncnm P 
2

3
  and   m , consequently  we get 
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Obviously, stresses reach maximum  value em  in the case, when  t = τ1 , x = xm 0x and 

 y = y1. ,   and therefore, according to (97),  the criterion  of workability of   contacting  surfaces,  when the maximal 

stress  must not be higher than the endurance limit lim , can be written as         
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Also,  we can take in account that  the dangerous    value of   stress takes place when the normal viscosity force has 

the extremum  in some point of the  time equal τb (see Fig.5.a).  And as we know, the extremum of function has place 

in the point when its  first derivative   equal zero, therefore we can write  
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 xx
RE

F
x

bn



                                            (99)  

So we receive the differential equation 

 

                                                                 02  xxxx                                                          (100) 

 

After the substitution of the functions )( bx  , )( bx  and  )( bx  into (100) and then after a  simplification we get 

the next equation for the calculation of the period of time b                                                

 

                                          0)(6)()23( 2222  xbxxxbxxx tgtg                     (101) 

 

 This algebraic equation very simple can be solved relative to the trigonometric function )( bxtg  , and  then the 

period of the time b  can be calculated.  Then   we can find xb  and the stress in the moment of the  time  b  by using 

(98). 

                                                    

ANALYSE AND CONCLUSION 
It is a very important  now to confirm of the correctness of the offered theories and methods,    obtained in this article, 

if to compare them   with others already available.  For example, the equation for the elastic force  

 have been obtained by the using of the “Method of the specific forces”.  In the case, when 

kp  = 1 we have the same solution like in the Hertz theory. Hence the Hertz theory gives the partial results in 

comparisons with proposed “MSF” method, because MSF” let to find the viscoelastic forces for any curvilinear contact  

between two surfaces, but Hertz case can be using only for the flat contact. The obtained result proves us that, the 

"Method of the specific forces" is  definitely valid  for finding of the normal elastic force, because if we know a 

functional dependency between r and x, we can always find the elastic force.   It is obviously that, if it gives the correct 

way for the definition elastic force, and also as it was represented,   it is  valid for the definition of  the  viscous  force 
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and the tangential viscoelastic forces.   We cannot find viscous force and the tangential viscoelastic forces by using 

the Hertz’s theoretical model, but   we can do this by   using  the “Method of the Specific Forces”.  It is obviously 

that, for the finding the normal viscous and the tangential viscoelastic forces,    we can  take kp  = 1, like according the 

Hertz theory,   but we should be aware that, in this case,  the contact area is  a flat surface   according  to 2D tensor of 

deformations and hx – the depth of indentation  has to be equal to zero. But in reality, the contact surface takes the 

curvilinear shape, therefore,  alternatively in this paper, the   way of the finding of the radius of the contact area, by 

considering the geometry of contact  between two curvilinear surfaces, have been proposed. It was received that the 

radius of contact area r = f(x)can be find  by  the   equation . Since this equation is not convenient in 

using, and therefore it  was proposed the finding r as , where  is the correlation 

coefficient, which  can be found by the method of iterations and consecutive approximations.  If a deformation is 

small, when , hence  we can take .  And, if contact area  is  a  flat, when , follows from 

Eq. 44* that                                                       0
2

22 



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

 

R

RDR
   Practically the area of contact can be considered 

as a flat surface only in the case, when the surface of a semi-space in many times harder than the surface of a body.  

For example, it is possible in the case of impact between a rubber ball and a steel plane. Hence, it  is obviously, that 

the “MSF” is the universal method, which  can be used for any functional dependencies between the radius or the 

diameter of the contact area and the distance  of the  mutual approach (the total deformation) between two curvilinear 

surfaces.  But nevertheless, we still have the question: What kind of the equation is better to take for finding of the 

radius of contact area, by the Hertz theory or directly by the way of  consideration  the geometry of the contact, like it 

is proposed in this article?  Objectively to answer this question, we have to analyse simply logically the way as these 

equations were received. It was taken according to the Hertz theory that  the contact surface is a flat, and the 

deformations are very small, the  contact pressure is distributed analogically as an electrical potential ( Remark:  an 

electrical potential is the scalar function, but   a pressure is the vector function), and then, on the basis of this main 

statements,  the    equation   between the radius of the contact area and the normal elastic force, and the equation 

between the distance of the mutual approach and the normal elastic force as the effect have been obtained.  Then only 

after that, in result of the comparison of these two equations by excluding the normal force ( Landau, 1944, 1965), the 

expression  have been received.  But in this article the analogical functional dependence have been proposed 

as the cause, in the result of the direct consideration the geometry of the contact.  It was  shown that, in the time of 

indentation of  more  hard  surface into a  soft surface,  the  contact surface takes a curvilinear elliptical shape (the 

function  is the elliptical function, which can be approximated by the parabolic function 

), where the point B (see Fig.4) is a special point where the deformations always equal zero, and  the border of the 

area of contact always pass through this point B.  Therefore, the proposed geometrical method is more exact, than 

according to the Hertz's theoretical model. 

On the other hand, the equation for the  normal  viscous force  gives the  similar result 

as it has place  in the contact between two bodies with identical mechanical properties in  the equation (1*), which 

have been obtained by  Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., and Poeschel, T. (1996).  After the comparison 

of two these equations, since as  and we obtain the following 

                                                                                                               (102)             

But since as  and in the quasi-static conditions    we get   
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  If  hence  too,   it is a totally elastic impact.    Thus we can find the parameter A by a very simple way 

using the “Method of the Specific Forces”.  

 

Also   the equation (51) to determine the maximum displacement xm have been derived.   It is obvious, that in the case 

of kx = 1 and kp =1 we have the same result, as was obtained by Landau (1944,1965)  for a totally elastic impact by 

using the Hertz Theory.  It proves   the correctness of the way of finding the Eq.65. But we have to understand that, 

this equation   has the borders of application which can be found if to solve the next equation
22

0 xxx   . First 

of all since as  and 
m

Bx
x

2
 , we can write that  and we get the next algebraic equation

. This equation has only the one valid solution  and  it  

has the valid  root only when , therefore ,  and according to Eq. 74 we get  for a 

viscoelastic contact  that 

 

                                                                                                                            (104)                                                                                                                    

  

In the case when     the plastic deformations will be have place in the zone of the contact. 

 

In conclusion, first of all, let us to mark, that the method of specific viscoelastic forces allows    to find the equations 

for all viscoelastic forces. The proposed method is a principally different with others in which are using the Hertz's 

theory, the classical theory of elasticity and the tensor algebra. In this method the new conception is proposed, how to 

find the elastic and viscous forces by an integration of the specific forces in the infinitesimal boundaries of the contact 

area.   The radius of contact area  can be taken according the Hertz  theory or can be found by the considering    the 

geometry of the contact. This method can be used in   researches of the contact dynamics of any shape of contacting 

surfaces.  Also in the article the method of the solution of the differential equations of a movement has been proposed 

and they have been solved. This method also can be used for determination of the dynamic mechanical properties of 

materials, and   it can be used in the design of wear-resistant elements and coverings for components of machines and 

equipment, which are working in harsh conditions where they are subjected to the action of flow or jet abrasive 

particles. Also the theoretical and experimental statements which are presented here can be useful in the design of 

elements and details machines and mechanism which are being in the conditions of the dynamic contact.  The results 

of the experimental and theoretical research and the method of the specific forces presented in this article can be used 

for the determination of the viscoelastic forces, contact stresses, durability and fatigue life for a wide spectrum of the 

tasks relevant to collisions between solid bodies under different loading conditions. Opportunities exist to use the 

obtained results practically in the design and development of new advanced materials, wear-resistant elastic coatings 

and elements for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors, valves, gate valves 

and in other installations. Also the using of this theory gives an opportunity for the development of analytical and 

experimental methods allowing optimising the basic dynamic and mechanical visco-elastic qualities already existing 

materials and in the development new advanced materials and elements of machines. Also this theory can be used not 

only for visco-elastic contact and also for any other kind of contacts, such as the elasto- plastic contact and for the 

elasto-visco-plastic contact too. 
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