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ABSTRACT

The dynamics of a viscoelastic collision between smooth surfaces two spherical solid bodies by the application of the
“Method of the specific forces” have been given in the article, and the new conception for the definition of the elastic
and the viscous forces in the common case of dynamics of a viscoelastic contact is proposed here by the further
development of this method. The forces of viscosity and the forces of elasticity can be found by integration of the
specific forces acting inside an elementary volume of the contact zone. Also, the derivation of the integral equations
of the viscoelastic forces, the equations for pressure in the contact is presented. Work and Energy in the phases of
compression and restitution, and at the rolling shear have been derived. Approximate solutions for the differential
equations of movement (displacement) by using the method of equivalent work have been derived. Equations for the
normal contact stresses have been obtained. Also, equations for kinematic and dynamic parameters of the viscoelastic
collision have been obtained in this article. Examples of the comparison of theoretical results and conclusions have
been given in the paper.

KEYWORDS: Viscoelastic forces; Method specific forces; Elementary distributed axial loads; Geometry contact
area; Dynamic modules; Dissipative energy; Viscoelastic parameters; Method equivalent work.

INTRODUCTION

The objective of this paper the finding of solutions to the problems of a dynamic contact between smooth surfaces two
spherical bodies. It is assumed here that the surface of contact is smooth and in this case we are not considering the
influence of roughness on the contact forces, and the initial velocities of contact Vox and Voy are less than the effective
sound speed in the volume of deformation Vq (Fig.1). Also the influence of adhesive forces has not been considered
in this paper.

As we know, the mechanics of an elastic contact problem between two smooth surfaces have been studied yet in the
19-th century by Herts (1882, 1896) and Boussinesq (1885), and then later, for example, it was examined by many
others researchers, such as: Bowden and Tabor (1939); Landau and Lifshits (1944); Timoshenko and Goodier (1951);
Archard (1957); Galin (1961); Sneddon(1965); Greenwood and Williamson (1966); Johnson, Kendall and Roberts
(1971); Derjaguin, Muller and Toporov (1975); Bush, Gibson and Thomas (1975); Tabor (1977); Johnson (1985);
Webster and Sayles, 1986; Stronge (2000); Persson, Bucher and Chiaia (2002); Wriggers (2006); Hyun and Robbins
(2007). Also a viscoelastic contact between smooth and rough curvilinear surfaces of two solids already have been
researched very widely and their results was published in many different manuscripts (Mindlin,1949; Radok. 1957;
Hunter,1960; Goldsmith, 1960; Galin, 1961; Lee, 1962; Graham, 1965; Ting, 1966; Greenwood and Williamson,
1966; Simon, 1967; Jonas, 1982; Padovan, Paramadilok, 1984; Johnson, 1985; Brilliantov, 1996; Brilliantov, Spahn,
Hertzsch, Poeschel, 1996; Ramirez, Poeschel, Brilliantovand Schwager, 1999; Stronge, 2000; Barber and Ciavarella,
2000; Goloshchapov, 2001, 2003; Laursen, 2002; Dintwa, 2006; Carbone, Lorenz, Persson and Wobhlers, 2009;
Harrass, Friedrich , Almajid, 2010; Persson, 2010; Cummins, Thornton and Cleary, 2012; Carbone, Putignano, 2013;
Popov 2015). In all these researches for a finding of the viscoelastic forces and stresses, the traditional theories
and methods usually have been applied. But, in this paper, the novel theoretical and practical principals have been
used for finding these forces and stresses.

Let two spherical bodies having the average statistical masses M, and M, , the average statistical radiuses R;and
R2, come into contact with the relative velocities of mutual approach Vox and Voy (See Fig. 1). And let the axis X
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coincides with the general normal N inthe initial point of contact A, and axis Y is directed along the line of maximal
approach of the contacting surfaces in the tangential plane ZAY (axis Z is placed perpendicular to the plane XAY and

it is not shown here); O:1 and O: are centres mass of the bodies and they are the centres of curvature of the
contacting surfaces.

As it is seen here, at the initial moment of the time, the colliding bodies come into contact at the initial point A with
coordinates x =0 and y = 0, but at the moment of time t the surfaces of the bodies approach to each other on the
size x, which also is the relative displacement of the centres of mass of the contacting bodies. Also it is shown here
that: X; , X, are normal deformations of surfaces of bodies; X is the mutual approach between two surfaces
by X; ris acurrent radius of the contact area in the plane XAY; hx is the depth of the contact surface.
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Figure 1. lllustration of the contact between a spherical solid bodies at impact

It is obviously that the bodies are deformed under the influence of the normal viscoelastic force F, , the tangential

viscoelastic force Fr and the reactive moment M , and according to Newton’s Second Law we can write:

EX=—m2X'
F, =-mj§ &)
M :_‘Jz @

Where: m is the effective mass; 17, X - the relative accelerations of the centres of mass of the bodies; J; is the effective
moment of inertia of a bodies; ¢ the relative angle of rotation of the bodies; ¢ is the relative angular acceleration

of the bodies; M = FTI is the reactive moment; | is the shoulder of tangential force. As we know, at impact of

two bodies, the effective mass m is entered like for the third body, and the movement (the displacement) x of the centre
of mass of this third body is taken equal to the distance x the relative displacement of the centres of mass of the
colliding bodies. Further in this article, let the third body will be called simply as a body. At impact of two bodies,
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\ dv. dv - T
according to the second law of Newton, we can write that m——= =m, dtlx =m, dt2X ,Where V, =V, +V,,
: do do do L :

, and also we can write that J, ot =J, d_tl =J, d_t2 where @ = @, + @,. From these two expressions
follows that

1 1 1 1 1 1

—=—+—,and —=—+—.
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The viscoelastic forces can be found as the sums of the elastic forces and the viscous forces:
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Where: F_, is the normal elastic force; F__ is the tangential elastic force; F,, is the normal viscous force; F,_is

the tangential viscous force.
Let us to write the equations for elastic forces and viscous forces in the simple form as follows

Fcn :CXX’ ﬁbﬂ:bX).(

B B @
F.=¢y, F,. =byy

Where: x and y are the sizes (distances) of the mutual approach between bodies, which also are the displacements
of the centres of mass of the bodies along axes X and Y; y, X - are the relative velocities of mutual approach between

the bodies; bX is the effective parameter of viscosity at the compression; C, is the effective parameter of elasticity the

compression; by is the effective parameter viscosity at the shift; C, is the effective parameter of elasticity at the shift.

Consequently, according to the equations (1), (2), (3) and (4), we can write the next system of the differential
equations of the displacement as:

mX+b,Xx+c x=0
J0¢+Ix ’(byj./-Fny): 0

The most basic problems in the finding of solutions for equations (5) are that, the dynamic contact between two
curvilinear surfaces is a non-equilibrium, a nonlinear process of deformations and in this case all mechanical dynamic

parameters of viscoelasticity (C,, Cy,bx,by) are not the constant values. They are variable during of the time of

impact, and all dynamic mechanical and physical properties of the materials depending on dynamic conditions of
loading and temperature. Therefore, especially for the solving of these problems, such as the definition of the normal
viscous force and the all tangential viscoelastic forces, the “Method of the specific forces” have been developed by
N. Goloshchapov (Goloshchapov, N., 2015)

In the past many old papers and others published recently (Mindlin, 1949; Simon, 1967; Johnson, 1985 ; Cundall
and Strack,1979; Brilliantov, Spahn, Hertzsch, Poeschel, 1996; Schafer, Dippel and Wolf, 1996; Ramirez, Poeschel,
Brilliantov, Schwager, 1999; Roylance, 2001; Brilliantov, Poeschel, 2004; Makse, Gland, Johnson and Schwartz,
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2004; Schwager and Poschel, Schwager and Poschel, 2007; Becker, Schwagerand, Pdschel, 2008; Schwager and
Poschel, 2008; Thornton, 2009; Saitoh, Bodrova, Hayakawa and Brilliantov, 2010; Cummins, Thornton , Cleary,
2012) have been used existing theoretical models, such as the “Linear Spring Dashpot Model”- (LS+D), the “Hertz
Mindlin Spring Dashpot Model”- (HM+D), and the “Discrete Elements Method” - (DEM). In all of these methods

and models, for the definition of the effective parameter of elasticity C, (or stiffness, or spring parameter), the Hertz’s

theory of elastic contact between two surfaces (Landau and Lifshitz, 1944, 1965) has been used. Also for the purpose
of finding the tangential forces the coefficient of friction was taken as a constant value. The more comprehensive
analysis and review of these already known models and methods can be found, for example, in the monographs of
the authors, such as, Stronge, W. J. (2000), Van Zeebroeck, M. (2005), Dintwa, E. (2006), Hongming Li (2006). But,
the most basic problems in the finding of solutions for equations (5) are that, the dynamic contact between two
curvilinear surfaces is a non-equilibrium, a nonlinear process of deformations and in this case all mechanical dynamic

parameters of viscoelasticity (C,, Cy,bx,by) are not the constant values. They are variable during of the time of

impact, and all dynamic mechanical and physical properties of the materials depending on dynamic conditions of
loading and temperature. And on other hand, we have to understand that, the Hertz theory allows only the finding the
normal elastic force, but it is not enough for finding the viscous normal force and all tangential viscoelastic forces.
The existing methods still cannot give the complete answer, how these nonlinear parameters of viscoelasticity can be
found for the practical application by using the dynamic modules of elasticity and viscosity, which usually can be
found by using the known methods (Ferry, J. D., 1948; Moore, D. F. ,1975; Van Krevelen D. W., 1972; Nilsen, L. E.,
Landel, R. F., 1994).

Most recent, from already published, researches in the field of the collision of viscoelastic particles (granules) with
identical mechanical properties have been made by Brilliantov, Hertzsch, Poeschel, Spahn , Hertzsch, Spahn ,
Brilliantov (1995, 1996, 2004). They have obtained the equation for the normal viscous force with variable viscosity
parameter

Fo = F =4 JR AJEE?, (1)
A-v7)
where =X, R =R, v s the Young modulus, Vv is the Poisson ratio,

Ao L@ —m)? [(1—#)(1— 2v)
3 (31, +21,) Yv?
constants. But this theoretical result can only be used for the researching of the quisistatic contact of the bodies with
the same physical-mechanical properties, and in this case we have the problem of finding the viscous constants “ 77, ”

} is the damping viscous parameter, and where 77, and 77, are the viscous

and “77,”. If the contacting surfaces have different physical-mechanical properties this conception does not give the

answer, because this is a yet more difficult problem. Also, for finding the equations for the tangential forces again the
coefficient of friction was taken as the constant value. But, the coefficient of friction is not a constant value. It can be
defined as the follows ratio:

F _Fcr+Fbr_ny+byy
F F,+F, CX+bx

(6)

n

It is obviously that the coefficient of friction is changing during the period of time of contacting. Thus, as we can see,
the many problems still exist now in this research area. Therefore, especially for the solving of these problems, such
as the definition of the normal viscous force and the all tangential viscoelastic forces, the “Method of the specific
forces” and others theoretical and experimental ways for the finding of the kinematic and the dynamic mechanical
parameters between two contacting surfaces, such as the elasticity modulus and the viscosity modulus, have been
developed and represented in this article below.
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THE METHOD OF THE SPECIFIC FORCES

Let us assume that in the infinitesimal period of the time dt, when the mutual approach between the bodies is the
infinitesimal magnitude dx (Fig. 2), inside the elementary infinitesimal volume dV, which is arising around the current
point of the contact A (Fig.1 and Fig.2), the infinitesimal viscoelastic forces dF, and dF; are beginning to act.

These forces can be found by differentiation of the normal Fy; and the tangential Fy; specific forces by sizes da and
dx:

dF, = F,da, szy = Fyida+ F, dx @)
Where: da is the diameter of the contact area in the instant of the time dt; F,; is the normal effective specific
viscoelastic force; Fyi is the tangential effective specific viscoelastic force.
According to the “Newton’s Third Law” the effective specific forces and the specific forces between contacting bodies
have to be equal: F,;=F, =F,,; F;=F  =F,. Where: F, and F, are the normal
specific viscoelastic forces; Fyl and Fy2 are the tangential viscoelastic specific forces. Here and further in this paper
the subscript | =1 is used for a soft body and | =2 is used for a more rigid body.

dF,

Where: T Fvi, ™ Fy

Figure 2. lllustration of the action of the specific viscoelastic forces inside the elementary infinitesimal volume of
deformations dV in the vicinity of the current contact point A at the instant of the time dt.

On the other hand, the specific viscoelastic forces can be found as the sum of the specific elastic forces and the specific
viscous forces:

in = I:xb + Fxc ! Fxl = Fap + Fxlc'

Fio=Fp+F. F,=F,+F Fo=Fon+Fo (8

yc ! ylc’

Where: F,, is the normal effective specific viscous force; F,_ is the normal effective specific elastic force; F,,

F,,, are the normal specific viscous forces; F,,., F,,. are the normal specific elastic forces; F,, is the tangential

xlc
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effective specific viscous force; F. is the tangential effective specific elastic force; F,;,, F,, are the tangential

specific viscous forces; F F.,,. are the tangential specific elastic forces.

ylc?’ y2c
THE DEFINITION THE SPECIFIC VISCOELASTIC FORCES AND THE EFFECTIVE
DYNAMIC MODULES AND VISCOSITIES BY USING THE “ELEMENTARY DISCRETE
ELEMENTS MODEL” (EDEM)

Also let us suppose that the volume of deformation is the system of an infinitely large number of elementary discrete
elements (Fig. 3.) connected among themselves definitely. And also, in this case let us assume, that for the infinitesimal
period of the contact time dt all deformations inside of each elementary discrete element are changing linearly and
therefore all specific forces are changing linearly too. Based on this, the equations for all specific forces can be written
as the linear functions:

Ho =neX, Fo=E%, F,=niy, F,=GYy

Xc yc

Exlb = 771'5 Xy, Fxlc = E1’X1’ Fylb = 771’0 Vi Fylc = Gll Y1 9)

'y ’ I '
FCZb =Xy, Foc =EXp, Fy2b =1xY2: Fy2c =G,Y,
Where: E'is the effective dynamic elasticity modulus at the compression; 77 is the effective dynamic viscosity at

the compression; G' is effective dynamic elasticity modulus at the shear; 77('3 is the effective dynamic viscosity at

the shear; E; , E; are the dynamic elasticity modules; 77, , 77, are the dynamic viscosities; Gl', Gé are

the dynamic elasticity modulus at the shear; 771'G ) 775@ are the dynamic viscosity at the shear.

’
T2e

’
e

Fxi

a. b.

Figure 3. lllustration of the “Elementary discrete elements model (EDEM)”: a. the elementary discrete element
of the normal contact between the bodies; b. the effective elementary discrete element of the normal contact
between the bodies.

It is obvious that the specific elastic forces are equal at the initial instant of the contact, when ¢ = 0, x = 0 (in this point
they are equal zero) and they are equal at the instant of the maximum compression between bodies, when x = xn (in
this point they reach the equal maximum value). But at the same time, the specific viscous forces are equal at the
initial instant of the contact, # = 0, x = 0 (in this point they reach the equal maximum value) and they are equal at the
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instant of the maximum compression between bodies, x = x, (in this point they are equal zero). All these forces in the
Eqg. 9 are linear continuous functions and if they are equal at two values of argument, they have to be equal at any
other values also, or by other words, they are equal in any instant of the time of the contact. Thus consequently we
can write that

Fo=F,=F

Xc xlc — I:xb = I:xlb = I:x2b ! ch = I:ylc =F I:yb = Fylb = I:y2b (10)

x2c y2c?

In the proposed model, each elementary deformation between two bodies develops analogically like the
deformation of the elementary discrete element, which is depicted in Fig. 3.a. It is a simple case of the linear model
of deformations of elementary discrete elements, and instead this model with four elements we can use its analogy —
the model with two effective elements depicted in Fig. 3.b. Also the “Elementary discrete elements model” for the
normal forces can be used for the tangential forces in the same manner. Since we have here the case of the linear
model of viscoelastic deformation, we can find the effective compliances as the sums of the elastic and the viscous

) 1 1 1 1 1 1 1 1 1 1 1 1 .
compliances as — =—+ , — + = —=—+——and finally the

— = , —=—+ ,
! ! ! ’ ’ ’ ! ! ’ ! !/ !/
E' B E e Me Me G G G, Ne  "e T
formulas for calculation of the effective dynamic viscosities and the effective dynamic modules of elasticity can be
written as:

El_ Ei[Eé r UJTEUEE G!_ G{Gé r 77{67726 (11)

- ' r 77E - r - r r ! UG - '
E, +E; The T 12 G, +G, The 126
Now, according to (9), (10) follows that F,. = E'x = E/X, = E}X,, and then according to (11) we can write
respectively that
X, = D,X and X, =D,X (12)

! !

nd D, =——— are the coefficients of deformations.

Where: D, =——=2—a —
E, +E; E,+E,

Finding of the integral equations viscoelastic forces
Now, having found all the specific forces and since as the areas of integration a and hy are known (Fig.1 and Fig.2),
according to the equations (7), (8) and (9) we can write respectively

dF, =2F,da=2ncxda+2Exda, dF, = F;da+F;dx =17¢yda+G'yda+n;ydx+G'ydx (13)

In the equations (13) the dynamic viscosities can be replaced at the dynamic viscosity modules according to the
known expressions (Ferry, 1963; Van Krevelen , 1972)

El! Gﬂ
—=n¢ and — =7, (14)
X a)y
Where: E" isthe effective viscosity modulus; G” isthe effective viscosity modulus at shear; o, is the frequency
of damped oscillations by axis X; o, is the frequency of damped oscillations by axis Y. Viscosity modules can

be found by using the known (Ferry, J. D., 1948; Moore, D. F. ,1975; Van Krevelen D. W., 1972; Nilsen, L. E.,
Landel, R. F., 1994) formula

EH GI!
— = =190, (15)
E' G’ 95
where £ is the angle of mechanical losses.
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Remark: In dynamics of the continuous environment the dynamic module of elasticity also named as the accumulation
or storage modulus, and the dynamic module of viscosity also named as the loss modulus (Ferry, J. D., 1948; Moore,
D. F.,1975; Van Krevelen D. W., 1972; Nilsen, L. E., Landel, R. F., 1994).

According to the Eq.13 the six integral equations can be written respectively as

IeCn = 2E’dea, F,, =20E)—:>'<jda

< (16)
:hbr :G_"dexv icr ZG'deX, Fab‘r :G_”y_[da: Facr :G’y.[da
_ @y 9 0 a)y

Remark: If the area of the contact surface is not a circle, but an ellipse, then we will get eight equations, because in
this case we will have two areas of integrating by the big and by the small axes of an ellipse.

CONSIDERATION OF THE GEOMETRY OF THE CONTACT BETWEEN TWO SPHERICAL
SURFACES

And now, the important moment, it can be seen that for a finding of the solutions for all these equations (16) we have
to know only the equations or the formulas for r = f(x), a = f(x), and for hy = f(x). For example, we can use that
r= (RX)”2 according to the Hertz theory, but according to this theory, the area of contact is a flat surface and the
depth of indentation (the depth of the contact surface) hy = 0. But in reality the area of contact usually is not a flat, it
is a curvilinear surface. In Hertz’s theoretical models has been taken that the contacting surfaces deform together
without of the sliding, but in reality each surface deforms independently. Therefore, to find the radius of the contact
area r in reality, let us to consider the geometry of the contact between two spherical surfaces, like it is depicted in the
illustrations in Fig.4.

Figure 4. lllustration of the contact between two spherical surfaces

We know that a collision of freely moving bodies is the special state; it is the period of time when the colliding bodies
are not affected by any external forces. It is not a compression of two bodies under the influence of the external
force when only the certain part of the bodies in the contact zone is deformed. In the initial instant of the time of
freely moving collision of two bodies or two particles the Newtonian force of inertia begins to act:
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n
F, =—mX= —(_Z‘,lmi )X, where m; is the elementary mass of the body. It is obviously, if the initial speed of impact
i=

less than the sound speed inside the volume of deformation, all elementary masses of a body will be involved in the
movement together in the same time and all space of a body will be deformed in the same time as well. If a body is
elastic or viscoelastic, the position of the centre mass of a body relative to the initial position of the main axes of
inertia of the body will not be changed and the magnitudes of the moments of inertia of a body will not changed
during the time of a collision, because if they will be changed, the continuity of an environment inside a body will
be broken. Also it is obviously that, in the time of indentation of more hard surface into a soft surface, the contact
surface takes a curvilinear shape, where the point B (see Fig.4) is a special point where the deformations always equal
zero, and the border of the area of contact always pass through this point B. According to this statement, for example
in the case of contact between two spherical bodies (see Fig.5), the distance OB between this point and the centre of
curvature O, of the surface of more hard body will not be changed in the period of time of contact. This distance
always equals to the radius of curvature R,. Also the distance O;B between this point and the centre of curvature O;
of the surface of less hard body will not be changed in the period of time of contact too. This distance always
equals to the radius of curvature R1. Hence, obviously that O,B = O.D = R, and 01B = O1E = Ry, and also we can

write that O,C +0,C = (R, +R,) — X, and since as O,C = (R? —r*)"?and O,C = (R? —r?)"?, after a
simple calculation, if to neglect by members of smallest order, we get the next equation for the radius of contact area
r =f(x):

r2 = 2Rx —x? (17)

Rl RZ
R, +R,

where R = is the effective radius of contact curvature

The equation (17) is not convenient for using and therefore, let us rewrites it as

r’ =kZRx, (18)

X
where kp = 1/2 - E is the correlation coefficient. If a deformation is small, when R >> X, hence that kp = \/E

Practically for the solution of the contact problems of mechanics, the correlation coefficient can be found by the
method of iterations and consecutive approximations.
Obvious from (18) that the surface of the contact takes the parabolic shape

> (19)
p

Since the surface of the contact has a parabolic shape, let us to take that the radial distribution of the pressure inside
of this area changes analogically according to the parabolic function as

2

ry
P=P|1-% (20)

Where: ry is a current radius of the contact area along axis Y; P is the maximum magnitude of the pressure in the
centre of the contact area.

Further since the square under this function and the square under the linear function of the mean pressure Pr, in the
contact area are equal, we get
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r ry2
Rf 1= Jdr, =Pur . (21)

0

than after the integration
1
Pc[r—ér)szr, (22)
and finally the ratio between maximum and the mean pressure in the contact zone can be found as
3
PC = E Pm (23)

Now let us to define h, - the depth of the contact surface (Fig.4 and Fig.1). The expression for the radius of contact
area can be found also as follows (Fig.4):

r? =R2 —(RZ = (x, +h,)f (24)

After a simple geometric calculation, if to neglect by members the smallest order, we obtain the next equation for the
radius of contact area:

r’=2R,(x, +h) (25)
Then after the comparison equations (17) and (25) we can write that

2R, (x, +h,) = 2Rx (26)

Finally since X, = D, X, the formula for hy can be written as follows

R-D,R
h =] —2=% [x=kXx, (27)
RZ
R-D,R, ) . .
where K, =| ———==| is the coefficient of the depth of the contact surface.
2

For example, in the case of contact between a spherical body and a semi-space, when R, = R follows that
k, =(@—D,) = D,, and hence
h, =x, =D,X (28)

X

Finding equations for the viscoelastic forces

Now it is necessary to prove that the equations in the system (16) are valid and correct. Since as da = 2dr and we
know contact radius from (18), we can find the derivative for a by x

/
kpRl 2

1/2
X

da= dx, (29)

And then after integration of the integral for the elastic force from the system of equations (16) we get

F, = 2ka'R”2jx”2dx: gka'R“Zx?"2 (30)
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If ko = 1 we have the same solution that has been obtained using the Hertz theory (L. Landau, 1944, 1965). The
obtained result is the proof that this method of finding the normal elasticity force definitely is valid and correct, and
that the Hertz’s theoretical model can be use as the partial case, if taken that the contact surface is a flat. It is obviously
now, if we know a functional dependency between r and x, we can always find the elastic force. But, if this method
is valid and correct for definition this force, then it should be valid for the definition of all viscoelastic forces in the
equations (16). Thus, if the functional dependency between rand x is known, for example according to the Hertz
theory or it can be found by using a simple geometrical analysis, we as well can find other viscoelastic forces by
an integration of the integrals from the system of equations (16) respectively as follows:

n

k EﬂRlIZ k E
H, =22 X0 o = 42— RYZX(D)X"".
1) 1)

1/2
X X X

" I/

hx G ’
Fipe = —— Y0 [ dx==—y(t)h,,
a)y 0 C()y
hX
Fiee = GY() [ dx =Gy(D)h,, (31)
0
abr = ;—y Rl/zY(t)IW =2k, a)_y RYZy()x"?,

" " dx ,
e = kpG y(t)Rl/2j X1/2 — 2kpG y(t)Rl/ZXl/Z

T

\

Remark: Here X(t), y(t), y(t) are the functions linear independent from x, and they cannot be integrated by x, and
they stay outside of integrals.

Since as hy is known, the equations for viscous thf and FhCT finally can be written as follows:
th ”

Fob: = Xy, B =k,G'yx (32)

y
After the summation of all partial equations for the elastic and the viscous tangential forces we get the general
equations for the tangential forces:

Fo. =G—ny and F, =GPy , (33)
a)y
where

P, =k,x+2k RY?x"? (34)

Thus, finally the equations for the normal and tangential viscoelastic forces can be written as

4k ENRl/Z 4
p oy 1/2 1/2,3/2
= XX +§ka'R X
a)X
(35)
G”
F.==—Py+GPy

w

y
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Now according to equations (1), (2), (5) and (35) the system differential equations of the displacement (movement)
of the centre of mass of a body can be written as follows:

4k EanIZ
mj('+p—)'(xl/2 +£ka'Rl/2X3/2 -0
, 3
G
my+—Py+G'Py=0 (36)
a

y

y

J0¢+{G— PXy+G'PXyJIX =0
@

Thus, the formulas for the variable viscoelasticity parameters in the system of equation (5) can be written respectively
as

4k E ”R1/2 4 G”
b, =—>——x"?, ¢, =—k,ER"’x"?, b,=—P,, ¢, =GP, 37)
, 3 @,
As we can see, indeed that, the parameters of viscoelasticity are not the constant magnitudes, but they are the functions
of the displacement x.

WORK AND ENERGY
As we know the period of time at impact includes two principally different phases such as, the phase of the

compression and the phase of the restitution. Also in the duration of a collision, the full initial kinetic energy of the
2

mVe,

colliding bodies divides into the two independent parts such as, the normal initial kinetic energy W, = and

2
the tangential initial kinetic energy W, = % . On the other hand, the full kinetic energy at the instant of rebound
2

mv,?

: (where V; is the relative velocity between the centres of mass of the bodies in the instant of rebound)

W

2
m\zltx (where Vi

includes two independent parts such as, the normal kinetic energy at the instant of rebound W, =
is the normal relative velocity between the centres of mass of the bodies in the instant of the rebound ) and the
o . mvV,? . . . .
tangential kKinetic energy the instant of rebound W, —__Y (where Vy isthe tangential relative velocity between
2

the centres of mass of the bodies in the instant of rebound). Therefore, the description of the processes of the
compression and the restitution along the axis X, and the shear along the axis Y are given independently in this part of
the paper.

WORK AND ENERGY IN THE PHASES OF COMPRESSION AND RESTITUTION

The graphical illustration of the functional dependences between the normal viscoelastic forces and the displacement
of the centre of mass of the bodies is depicted in Fig. 5: (a). Also the “Rheological model of Kelvin-Vogt”, which
usually is used for the viscoelastic contact, is represented in Fig. 5: (b). It is obvious that the normal initial Kinetic
energy Wy is spent for the work A, of the normal viscoelastic force F, in the compression phase. But on other
hand, Axm can be found as the sum of the works Axcm and Axsm, Where  Ayem is the work of the normal elastic force

F,, and Awn is the work of the normal viscous force F,, in the compression phase. Also we can say that the part of

the kinetic energy Wy is transformed into the potential energy of the nonlinear elastic element (spring) (Fig.5: (b)) and
the other part of this kinetic energy is dissipated during the time of deformation at the compression of the nonlinear
viscous element (dashpot).
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Figure 5: (a) - The graphical illustration of the functional dependences between the normal viscoelastic forces
and the displacement x of the centre of mass of the bodies; (b) - The “Nonlinear Rheological Model of Kelvin-
Vogt”, where cx and bx are not the constant magnitudes.

However, on the other hand, the work Ay of the normal viscoelastic force F, in the restitution phase is equal to the
normal energy of the bodies Wy at the instant of rebound, and also Ay can be found as the difference between Ayt
and A, where Ay is the work of the normal elastic force F_, and Ay is the work of the normal viscous force F, |
in the restitution phase. Consequently, we can write that

mv,2
Axm = Axcm + Axbm :WOX = 20
(38)
mv,/
A\a = Axct - Axbt :th = 2t

It is obvious that Axcm = Axet and hence the potential energy which has been accumulated inside of the elastic element
(spring) fully returns back to the bodies in the instant of rebound. The works Axm and Axem at the compression can be
found by integration:

X, X
¢ 4 12 [ 302 8 1/2,,5/2
A, :ijdx=§ka'R [x dx = ok, ERYx (39)
0 0
and
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X X 4k EI!RlIZ 4k E"R1/2 Hm dXXllde 8k E"Rl/2x5/2
Ay, = Iandx = fp—Xx”zdx =L L j - =—F — (40)
0 0 Wy o, jldt Sw, 1,
0
Analogically the works Ay and Ax: in the restitution phase can be found as follows:
i 4 1/2,,3/2 8 1/2,5/2
A == [ Fadx=—[ =k ER"*x*?dx = —k ER"*x; (41)
: J3 15
and
0 0 mol/2 ml/2 ° xM2dx | dx moll2,5/2
4k ERY? 4k E'RY? ), 8k E'R*x}
Ay =-— I F.dx = —j—xx ax =— — = (42)
" v 0 o, J‘ “dt Sw,7,

Where: T, = T; + T, is the period time of the contact; 7, is the period time of the compression; 7, is the period

time of the restitution; xm is the maximum magnitude of the compression between bodies (also it is the maximum
displacement of the centre of mass of the bodies, which is equal to the maximum of mutual approach between bodies).
According (38), (39), (40), (41) and (42) the equations for the work of the compression and the restitution can be
written as follows:

A =A _ 8 k Rl/Z 5/2 E! 3E”
m T xcm+Axbm__ p X ( + )
15 0,7,
(43)
8 | pu2y502 3E”
Axt :Axct_Axbt:_kpR Xo (E,_
a)xTZ
and according (15) and (43) we can write
8 3t
Axm :_kaIRl/2Xr5n/2 1+ gﬂ
1 0,7,
(44)
A :Ek E!Rl/2X5/2 1_3tgﬂ
15 P " 0,7,
. mv, MV, . . .
Sinceas A, =W, = 5 A, =W, = T and by using the first of the equations (44), we get the formula for
Xm respectively
5 2/5
15maw, 7V,
Xm = k pH1/2 (45)
16(3tg3 + w,7, )k, ER
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Also, we can define the energetic coefficient of restitution ey, which equals to the square of the kinematic coefficient
of restitution ky (further it will be named simply the coefficient of restitution), like the ratio between Wi and Woy:

th T, — 319 k2

e, =ki=—5%= (46)
VOx a)xz-l + 3thB T2
Since as we can take that
X ~ M Z' f— /Vtx / T 47
m > 1 > 2, (47)
we get that
k, =L, (48)
()
and using (46) and (48) we get that
o, 7, 1-Kk
t — x~“1 < X 49
9p 3 ” (49)

X
Thus, we have got the equation, which binds the coefficient of restitution and the tangent of the angle of mechanical

losses. So, if ky = 1, tgf — 0 we get the totally elastic impact, but if ky =0, #gff — oo then we get the totally viscous
impact. Using (49) we can write the formula for the restitution coefficient as

k = Oxty (50)
LGS+ wr)

If to compare the equations (45) and (50) we can finally get the expression for the maximum magnitude of the
compression between a body and a semi-space respectively as

2/5
15mV,>
Xm =| oz Kx (51)
16k E'R

In the case of a totally elastic impact, when ky = 1 and k, = 1 we get the same result, as it has been obtained by L.
Landau (1944, 1965) according to the Hertz theory for the totally elastic contact.

Work and Energy at the rolling shear
It is obvious that, in the during time of the displacement and the rolling shear along axis Y, the tangential initial

kinetic energy of the bodies Wy is spent for the work Ay of the tangential viscoelastic force ET . The work Ay can be

found as the sum of the works Ay, and Ay, where Ay, is the work of the tangential viscous force F,_ and Ay is

the work of the tangential elastic force. But on other hand, it is obvious as well, that the work Ay is transformed into
the dissipative energy Q. and the work Ay is transformed into the work A, of the relative rotation between
bodies. Thus, according to the “Law of the preservation of energy for a non-conservative (dissipative) mechanical
systems”, we can write equations for the relative displacement of the centres of mass of the bodies and for the relative
rotation of the bodies, as follows below:
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2
(ﬂj + A
dt Y
2
(d—qp) +A, +Q, =

dt
Where: A, =IF,dy; A, _IMd(D; Q. =J.Fbrdy,andwhere M=FI.
since F, =, + F,, andsinceas dp=dy/I, hence
A, =—-[Mdp=—[(F, +F,)dy

Also since, if the initial angular velocity €, equals zero we can write the equations (52) for the boundary conditions

2
_ mVy
2

m
2
J,

2

(52)
J, @

(83)

in the instant of the time t =7, of the maximum compression X=X, and Yy =Y, as follows:

mv,.,

2

Y1 2

mV
+.|.(FCT+FbT)dy= 4
0

2
; (54)

Y1 Y1
Jza)m - J-(Fcr + Fbr)dy+ J. Fbrdy = 0
0 0

2

Where: Vry is the velocity at the instant of the timet =7, ; wn s the relative angular velocity between bodies at the
instant of the time t=17,; Y, is displacement of the centres of mass of the bodies along axis Y at the instant of the

timet =7, . The equations (54) can be rewritten as

2
mVy
2

2
mV,
2

,Y1
[(F.+F,)dy=
0

J o’ (%%)

Y1
= [F..dy

0

Also at the point of the rebound, when t =7, we get

mV.,?

Yt

ty

2

+ [ (F.. + F,.)dy =
Y1

J z a)t2
2

Yt
- J(Fcz' + sz')dy +
Y1

Then we can write that
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mV,
2

(56)

2
Jza)m

Yi
I R, dy =

Y1
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2
my

m\/tj Yt
5 +I(FCT+FbT)dy:
®7)

2 2
‘]za)t ‘]za)m — FCTdy
2 2 "

S

The summation of the systems (55) and (57) together yields the following result

Yt

mv, mV2 %
(F + Fbr)dy_ v'.(l:C‘z' + Fb‘r)dy

2 Y1
(58)

J jFCTdy + I F..dy

Y1

We can rewrite equations (58) in the next order

Y1

mV,’ mV2 %
A = —I( +Fbr)dy+_[(FcT + . )dy
2 Y1

2 % Vi (59)

L= J. F. dy+ I F..dy
Y1
Finally, we get
mv, mv,
Ay= ) - 2 :Abm+Aycm+Aybt+Ayct
(60)

A = 2 ycm yct

Where 'A\/bm _[bedy is the work of the tangential viscous force Fbr in the compression period 7 ;

Y1
in the compression period 7 ;

Aycm :J.Fcfdy is the work of

0

the tangential elastic force F_,
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Yt
Aybt == Fbrdy is the work of the tangential viscous force I, in the restitution period 7, ;
Y1
Yt
Ayct = —J. Fcfdy is the work of the tangential elastic force F__ in the restitution period 7, .
Y1

G"
Since as from Eqs.33 follows that F,, =—P,y and F_ =G'P,y, all these works in (60) can be found by
)

y
integration, as follows:

" ¥y " dvd " 2
A = Idpgydy_f)_ypmj {diy 2CZ)y Pmi_i

P Y1 G’
Asen =G’£dPx£ydy=7Pmyf

G"o G fjd dy gr o yzoy2 -
Ay =— p F{dpy{ ydy ——y(o P,)= =20 P, p—

5

«=-G' dejydy— Py - ¥2)

Pm Y1

Where
P, =k, +2k R"*x} (62)

The full changing of the energy of the dissipative system at the rolling shear can be found as the difference between
Ay and Ay from (60):

2

mvy mvy J

2
Z(()
2y_ 2 2t = Ao + At = Ay (63)

AW, =A -A, =

According to the equations (60) the conclusion can be drawn that the work Ayc is transformed into the kinetic energy
of the relative rotation between the bodies, but on the other hand the work Ay, is transformed into dissipative energy
Q. in the process of the internal friction. Accordingly, using (60) and (61) we have

J o G'
_ V%
Ae=—=7F Y (64)
Hence, the equation for the relative angular velocity at the instant time of rebound can be written as follows

1

GP, |2
o = = Y (65)
J,
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Since the work Ay of the viscous tangential force F,, is equal to the dissipative energy Q,, , using equations (61) we
get

Gll 2 2 2
Ay =Qu = Apn + A =5 Fa hh K (66)
@, T T, T
Sinceas 7; = K, 7, , finally we get
G”
=Q, = Auy tAg =R A-k) kY] @
y 27X

APPROXIMATE SOLUTION TO THE DIFFERENTIAL EQUATIONS OF THE DISPLACEMENT BY USING
THE METHOD OF THE EQUIVALENT WORKS

For practical application of the differential equations (5) with the variable viscoelasticity parameters, we can find their
approximate solutions in the same manner as for the equations with the equivalent constant viscoelasticity parameters,
if we choose the equivalent constant parameters By, Cx and By, Cy so that the work Axcmand Axom , Ayemand Ayom With
the variable viscoelasticity parameters cy, by and ¢y, by will be equal to the works with the constant viscoelasticity
parameters. Thus, according to this statement and according to a boundary value problem, which has to satisfy to

the boundary conditions X = X and Yy =Y, , and using the known expressions for work Axmand Axm , Ayem and
Ayom from (39), (40) and (61), we can write next equations

=C, jxdx :—C X2 :Eka'R”Zxr‘fj2
0 15

(68)
xm
X J. xdx 2 8k EﬂRl/Z
. X
Agn =B, [Xdx=B 2 — =B~ =—L— )l
0 jldt 7, SQxfl
0
and also in the phase of the roIIing shear for the period of the compression time
1.
A =C jydy Cyl— 5GPy
(69)

P,y;

A =B, [ yd Bjyljyy g Ji_ G
Jyy J’O dt Y2, 20,7,

Hence, according to the results obtained in (68) and in (69), we can write the expressions for the equivalent constant
viscoelasticity parameters, respectively as:
”| 1/2
16E kpR le/z’ c. =18y E’Rl’lem’z, B, = G”

5w, 15 w

16

= P,, C, =GP, (10
y

Thus, the equations (5) with variable parameters can be rewritten as the equations with constant parameters as follows:
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mX+B,Xx+C,x=0
mj}+ By_)./+ny =0 (71)
3,+1,-(B,7+C,»)=0

The equations (71) are the equations of the damped oscillations and the solutions to these equations are known:

x =226 sin(w,t)
w

(72)

2m

B /C
harmonic oscillations by axis X ; @, = 1/a)gy —5y2 ; 5y = —Y is the tangential damping factor; Wy, = —~ s
2m m

the angular frequency of the harmonic oscillations by axis Y.

B IC
Where: @, =+ @}, —057 ; 8, =— isthe normal damping factor; @,, =,|— is the angular frequency of the
m

It is obviously that the period of time of the contact z is equal to the semi-period of damped oscillations Ty/2 by axis
X.

T, == =— (73)

Sinceas 7, =7, + 7, and also by using equations (46), (48),(49) and (73) we get:

7z (A-k,)
t = x—— X 74
9s 3 (A+k,) 4
The equation for the restitution coefficient we can write now as follows:
— 3t
_ (z—3gp) -
(7r +3tgp)

If tgf = 0 hence ky= 1, it is atotally elastic impact, but if g = 772 hence k= 0and x =0, it is absolutely plastic
impact. Both of these two cases are not possible in nature. Finally, from (51) and (75) follows that

2/5
« 15mV,. (7 —319p)
" |16k ,E'RY? (7 +3tgp)

(76)

Thus we have a very simple way to calculate xm, if we know the value of ¢gf. According to the equations (11), (14)
and (15) ¢gp can be calculated by formula
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E’ _ EEI(E[+E)

tasl — _
e TERGE B

(77)

The equations for the relative velocities of the centres of mass of the bodies can be received by differentiation of
(72):

2o o, cosfnt) o]
a)x
(78)
V
= %e_‘syt [a)y cos(a)yt)— o, Sin(wyt)]
y

Using (78) for the velocity, the duration of the time of the impact equals to the period of the time of the contact can
be found now from the conditions X =V,, and t =17, as

N In Kk, ;.
X 5. (79)
where
5 — Bx — 8ka”R1/2 X1/2 — 8ka,tg'8,z_ R1/2X1/2 (80)
*2m 5mam, " 57zm X o
and since #gf is known from (74), by using (51),(79) and (80) we get
2+k,)Ink 5 v
+ n m
T = QrkJink, | (81)

Vo *(L—k, )k | 8k, E'RY?

DETERMINATION OF THE DYNAMICS MODULES BY THE METHOD OF THE
“TEMPERATURE-TIME SUPERPOSITONS”

The dynamic elasticity and viscosity modules for high velocities of the collision can be found, if to follow the
principles of the “Time-temperature superposition” according to the equation of the “WLF” Williams - Landel - Ferry
or Arrhenius (Ferry, 1963; Van Krevelen , 1972; Moore, 1975; Nilsen and Landel, 1994). First of all we have to
define experimentally the effect of temperature for the period of the contact time 1«, and for the coefficient of
restitution ky at the fixed initial velocity of impact. For example, if we define these parameters for velocity at 2 m/s,
then using the principles of the “Time-temperature superposition” we can determine their values for any velocities
interesting for us, for example for velocity 100 m/c and for temperature 100 OC. After this, when 7 and kx will be
known, we can find the value of ¢gf and the dynamic modules £ and E". If to use the equation (81), the expression
for the calculation of the effective dynamic elasticity module can be written as follows

, 5m (-2Ink)a+k))""
E'= 8ka01<2R1/22'f/2 x K (L—k,)

(82)

And, if to use (15), (74) and (82) we get the formula for the calculation of the effective dynamic viscosity module

1/4
157zm 1+k
"= 2oz sz X (=2In kx)5/4(—( ) J (83)
24ka0X RY“z, k,(1-k,)
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Obviously, if kx = 0, then E” = 0 too. We can find G’ and G" in the analogical way.

VISCOELASTIC STRESSES IN THE CONTACT AREA

Obviously that in the time of mutual approach between bodies, under action of the elastic forces, the instant
volumetric elastic stresses arise in the deformation volume of the contact, and in the same time, the instant volumetric
viscous stresses have place in process of the inside friction of the layered structures of a contact space between each
other under action of the viscous forces. These can be found by using the classical expressions, as

Ta="gy " 00Ty

X

d(Av d(av
dAVe) V) o o - (dvcy)K,’ o\ (AVy) 5

dv

X y y

Where: O, is the normal volumetric elastic stresses, Oy, is the normal volumetric viscous stresses, O, is the
tangential volumetric elastic stresses, O\, is the tangential volumetric viscous stresses; AVCX is the normal elastic
deformed volume; Ava is the normal viscous deformed volume; AVCy is the tangential elastic deformed volume;

Abe is the tangential viscous deformed volume; VX is the normal deformation volume; Vy is the tangential

deformation volume; K’ isthe elasticity bulk modulus; K" is the viscosity bulk modulus.
The volumes of deformations in differential forms dVux - at the compressing and dVgy - at the shift (see Fig. 2) are
defined by formulas

dv, =S,dx, dv, =S dy, (85)
Where S, = ar 2 = k; RX s the area of contact placed perpendicular to axle X, S y is the area of contact placed

perpendicular to axle Y. Formulas for S y can be found by integration dSy = 2rdx

$,=2] rdx= 2kpR1’zjxl’2dx:%kpR“zxm (86)
0 0
and respectively we get
4
dV, =k2Rxdx and dV, = ER”sz’zdy (87)

The deformed volumes, which are equal to the changing of volumes of deformations in the course of their
deformations, can be defined according to the balance between the elementary works, which spent on deformations,
and the elementary energies of these deformities:

dh, =F, dx= EkpRl’2x3’2dx =dW, =d(AV, )k’
3
(88)
4kpRl/2 EI! s
di, = R dx = ————xx"“dx = dW, = d(AV, )K"
a)X
and
A, = F..dy =GP ydy =dW, =d(AV, )K’
(89)
G” . y
Aby = Fbrdy = C()_ I:>x ydy = dey =d (Avby) K
y
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Where: dAcx , dWex , dAcy , dWey and dAox , dWhbx , dAny , dWhy are the elementary work and elementary energy of

elastic deformation at compression and shift.
Thus the deformed volumes we can write like the system four equations

( 1/2=n
’ 4k RY2E
d(AV, ) = 4E Kk RY2x%2dx, d(AVbX):p—)'(Xllzdx
3K P o K"

X

< (90)

Gr G"
d(av,)=—Pyd d(Av,,)=——-P,yd
L ( cy) K, xy yv ( by) a)yK" xy y,

The normal volumetric viscous and elastic contact stress according to the formulas (84), (87) and (90) can be written

_ 4B X 4E" X

o, =———~ 0, =—————— X——— 91
y b
cn 37zkp RY/2 n ﬂwallz x1/2 (91)
Thus, for the normal volumetric viscoelastic is the sum the elastic and viscous normal stress
.\ 4E (xY? , Xgp
c,=0, +0, = 92
b
n cn n ﬂkpRl/Z 3 a)XXIIZ ( )
On other hand the normal mean pressure Pr, in the contact area, can be found as
F. 4E" (x"*  xtgp
Lhre (93)

= +
1/2 2 |
. KR 3 X
thus as we cansee P, =o,.
The tangential volumetric viscous and elastic contact stress according to the formulas formulas (84), (87) and (90)

can be written as
3G Py 3G" Py

O, = —77, Obe = X 94
T ARV 312 r 4a)yR1/2 ¥ 312 (94)

And hence, the expression for the tangential volumetric viscoelastic stress can be written as

GPh |, Y9p

4Rl/2x3/2 )

O-r = Gcz' + Gbr = (95)

y

Definition of the maximal stresses in the contact area
Most dangerous values of contact stresses have in the points when values of forces elasticity and viscosity maximal

too. According to the hypothesis of maximum tangential stresses the equivalent stress can be defined under the

formula
2 2
o, =40, t40, (96)
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3
Sinceas Oy = Pc =0, and O, =0, consequently we get

2

2
6 | E'(x'* xgp G'P, yigs
Oe = RY/Z ﬂkp 3 +(0XX1/2 A2 y+a)yxl/2 (97)

Obviously, stresses reach maximum value O, in the case, when ¢ =71, X = xn X = 0and
y =vy1., and therefore, according to (97), the criterion of workability of contacting surfaces, when the maximal

stress must not be higher than the endurance limit O, can be written as

2
6 | E'[x G'Py, ALK
Oen = RY2 1| 7k 3 + 4x32 it wlxllz < Ojim (98)

p y*m

Also, we can take in account that the dangerous value of stress takes place when the normal viscosity force has
the extremum in some point of the time equal v (see Fig.5.a). And as we know, the extremum of function has place
in the point when its first derivative equal zero, therefore we can write

4EHR1/2 U
(Fyp)' =———(x""X)'=0 (99)
a)X
So we receive the differential equation
2XX+Xx =0 (100)

After the substitution of the functions X(7,), X(z,)and X(z,)into (100) and then after a simplification we get

the next equation for the calculation of the period of time 7,
(35, —20:)19° (@,7,) - 60,5,9(w,7,) + @; =0 (101)

This algebraic equation very simple can be solved relative to the trigonometric function g (a)xfb), and then the

period of the time 7, can be calculated. Then we can find x, and the stress in the moment of the time 7}, by using
(98).

ANALYSE AND CONCLUSION
It is a very important now to confirm of the correctness of the offered theories and methods, obtained in this article,
if to compare them with others already available. For example, the equation for the elastic force

4
F,=— kp E'RY2x%2 have been obtained by the using of the “Method of the specific forces”. In the case, when

cn

ko, = 1 we have the same solution like in the Hertz theory. Hence the Hertz theory gives the partial results in
comparisons with proposed “MSF”” method, because MSF” let to find the viscoelastic forces for any curvilinear contact
between two surfaces, but Hertz case can be using only for the flat contact. The obtained result proves us that, the
"Method of the specific forces" is definitely valid for finding of the normal elastic force, because if we know a
functional dependency between r and x, we can always find the elastic force. It is obviously that, if it gives the correct
way for the definition elastic force, and also as it was represented, it is valid for the definition of the viscous force
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and the tangential viscoelastic forces. We cannot find viscous force and the tangential viscoelastic forces by using
the Hertz’s theoretical model, but we can do this by using the “Method of the Specific Forces”. It is obviously
that, for the finding the normal viscous and the tangential viscoelastic forces, we can take k, = 1, like according the
Hertz theory, but we should be aware that, in this case, the contact area is a flat surface according to 2D tensor of
deformations and hyx — the depth of indentation has to be equal to zero. But in reality, the contact surface takes the
curvilinear shape, therefore, alternatively in this paper, the way of the finding of the radius of the contact area, by
considering the geometry of contact between two curvilinear surfaces, have been proposed. It was received that the

radius of contact area r = f(x)can be find by the equation r’ = 2Rx — x°. Since this equation is not convenient in

. . .. 2 2 / X .
using, and therefore it was proposed the finding r as I = kpRX, where kp = Z_E is the correlation

coefficient, which can be found by the method of iterations and consecutive approximations. If a deformation is
small, when R >> X, hence we can take kp -2 And, if contact area is a flat, when h, =0, follows from

R-D,R,
RZ

as a flat surface only in the case, when the surface of a semi-space in many times harder than the surface of a body.
For example, it is possible in the case of impact between a rubber ball and a steel plane. Hence, it is obviously, that
the “MSF” is the universal method, which can be used for any functional dependencies between the radius or the
diameter of the contact area and the distance of the mutual approach (the total deformation) between two curvilinear
surfaces. But nevertheless, we still have the question: What kind of the equation is better to take for finding of the
radius of contact area, by the Hertz theory or directly by the way of consideration the geometry of the contact, like it
is proposed in this article? Objectively to answer this question, we have to analyse simply logically the way as these
equations were received. It was taken according to the Hertz theory that the contact surface is a flat, and the
deformations are very small, the contact pressure is distributed analogically as an electrical potential ( Remark: an
electrical potential is the scalar function, but a pressure is the vector function), and then, on the basis of this main
statements, the equation between the radius of the contact area and the normal elastic force, and the equation
between the distance of the mutual approach and the normal elastic force as the effect have been obtained. Then only
after that, in result of the comparison of these two equations by excluding the normal force ( Landau, 1944, 1965), the

Eg. 44* that J =0 Practically the area of contact can be considered

expression r? = RX have been received. But in this article the analogical functional dependence have been proposed
as the cause, in the result of the direct consideration the geometry of the contact. It was shown that, in the time of
indentation of more hard surface into a soft surface, the contact surface takes a curvilinear elliptical shape (the

function > = 2Rx — X isthe elliptical function, which can be approximated by the parabolic function r’= k;RX

), where the point B (see Fig.4) is a special point where the deformations always equal zero, and the border of the
area of contact always pass through this point B. Therefore, the proposed geometrical method is more exact, than
according to the Hertz's theoretical model.

14
— RY2xx*? gives the similar result

@y

as it has place in the contact between two bodies with identical mechanical properties in the equation (1*), which
have been obtained by Brilliantov, N. V., Spahn, F., Hertzsch, J.-M., and Poeschel, T. (1996). After the comparison

of two these equations, since as X = f and R= R we obtain the following
_E'k,(1-v?)

On the other hand, the equation for the normal viscous force F,, =4k,

A (102)
Yo,
But since as @, = — and in the quasi-static conditions E'=Y we get
TX
k tg
A=p—'8><(1—v2)><z'X (103)
T
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If ﬁ =0 hence A=0 too, itisa totally elastic impact. Thus we can find the parameter A by a very simple way
using the “Method of the Specific Forces”.

Also the equation (51) to determine the maximum displacement x, have been derived. It is obvious, that in the case
of kx = 1 and kp =1 we have the same result, as was obtained by Landau (1944,1965) for a totally elastic impact by
using the Hertz Theory. It proves the correctness of the way of finding the Eq.65. But we have to understand that,
this equation has the borders of application which can be found if to solve the next equation @, = W/ng —5X2 . First

C B w?
of all since as a)gX =—" and d,=—", we can write thatd, = o

m 2m 20,

2
)
wy — o oF +wytg® B =0. This equation has only the one valid solution @? = 2°X ﬁ+ 41-9tg Zﬂ) and it

14

EV

19/ and we get the next algebraic equation

has the valid root only when 1—9tg Zﬁ >0, therefore 19/ =

< é and according to Eq. 74 we get for a

viscoelastic contact that

k,>=—— (104)

-1
In the case when K, < —1 the plastic deformations will be have place in the zone of the contact.
T+

In conclusion, first of all, let us to mark, that the method of specific viscoelastic forces allows to find the equations
for all viscoelastic forces. The proposed method is a principally different with others in which are using the Hertz's
theory, the classical theory of elasticity and the tensor algebra. In this method the new conception is proposed, how to
find the elastic and viscous forces by an integration of the specific forces in the infinitesimal boundaries of the contact
area. The radius of contact area can be taken according the Hertz theory or can be found by the considering the
geometry of the contact. This method can be used in researches of the contact dynamics of any shape of contacting
surfaces. Also in the article the method of the solution of the differential equations of a movement has been proposed
and they have been solved. This method also can be used for determination of the dynamic mechanical properties of
materials, and it can be used in the design of wear-resistant elements and coverings for components of machines and
equipment, which are working in harsh conditions where they are subjected to the action of flow or jet abrasive
particles. Also the theoretical and experimental statements which are presented here can be useful in the design of
elements and details machines and mechanism which are being in the conditions of the dynamic contact. The results
of the experimental and theoretical research and the method of the specific forces presented in this article can be used
for the determination of the viscoelastic forces, contact stresses, durability and fatigue life for a wide spectrum of the
tasks relevant to collisions between solid bodies under different loading conditions. Opportunities exist to use the
obtained results practically in the design and development of new advanced materials, wear-resistant elastic coatings
and elements for pneumatic and hydraulic systems, stop valves, fans, centrifugal pumps, injectors, valves, gate valves
and in other installations. Also the using of this theory gives an opportunity for the development of analytical and
experimental methods allowing optimising the basic dynamic and mechanical visco-elastic qualities already existing
materials and in the development new advanced materials and elements of machines. Also this theory can be used not
only for visco-elastic contact and also for any other kind of contacts, such as the elasto- plastic contact and for the
elasto-visco-plastic contact too.
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